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Abstract 

The year 1990 marks the fiftieth anniversary of the much celebrated Pairing Theorem of 
Coulson and Rushbrooke. In its original form, the Theorem stated that for any altemant 
hydrocarbon: (1) the r¢-electron energy levels are symmetrically distributed about the zero 
energy level; (2) the LCAO-MO associated with the energy level e. is the same as that 

L 
belonging to the energy level -e .  except for a difference of sign (only) in every other 

1 
atomic orbital coefficient; (3) the total ~r-eleclzon charge denslty at any carbon atom in the 
molecule equals unity. Here, we trace the origins of this Theorem, describe its subsequent 
development, and outline some of its more significant uses. We conclude by discussing 
recent applications of the Theorem to positive and negative hydrocarbon ions, Möbius 
systems, and high-spin hydrocarbon species. 

1. Introductlon 

The year 1990 signals the fiftieth anniversary of the well-known and much 
celebrated Pairing Theorem of C.A. Coulson and G.S. Rushbrooke [1]. The Theorem 
was originally published as a short communication in the Proceedings of the Cämbridge 
Philosophical Society under the heading "Note on the Method of Molecular Orbitals" [1 ]. 
In spite of this unprepossessing tiüe, the Theorem was an immediate success in that it 
found widespread application in the chemical context [2-5]. Even today, it is still of 
considerable importance and, over the last decade, has been the inspiration for much 
research work in mathematical chemistry [6-11]. In this review, we shall endeavor to 
trace the origins of the Theorem, follow the developments made down to the present 
time, and describe in some detail several of its more important uses. We shaU conclude 
by briefly examining recent elaborations of the Theorem to chemical systems as varied 
as posiüve and negative hydrocarbons [11], Möbius structures [12,13], and high-spin 
hydrocarbon species [8]. 
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The significance of the Pairing Theorem is that it represents a very important 
generalizing principle that can be appfied to major areas of chemistry and physics. 
However, in its original formulation, the Theorem pertained only to conjugated hydro- 
carbons and, in particular, to a class of these hydrocarbons known today as alternants. 
Altemant hydrocarbons are conjugated systems in which the constituent carbon atoms 
can be partitioned into two mumally exclusive subsets. The partitioning process is 
carried out by alternately placing a star by every other carbon atom in the structural 
formula of the conjugated molecule in such a way that no two "starred" atoms are 

(a) 

starrlng process 
not posslble 

(b) 

Fig. 1. The Coulson-Rushbrooke "starring process" for altem- 
ant and nonahemant isomers of the bicyclic hydrocarbon Cl0H s. 
(a) Shows the altemant isomer (naphthalene); (b) shows the 
nonalternant isomer (azulene). Note that the latter cannot be 
consistenfly "starred". 

direcfly bonded together with a covalent bond. In other words, starred carbon atoms are 
linked only to unstarred carbon atoms, and vice versa. By way of illustration, the carbon 
atoms in the naphthalene molecule can be consistently "starred" in this way, as shown in 
fig. l(a), whereas those in its isomer, azulene, cannot, as may be seen from fig. l(b). 
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Naphthalene is therefore an example of an altemant species, while azulene is referred 
to as a nonaltemant species. It is easily seen that any conjugated system containing an 
odd-membered ring of carbon atoms must be a nonaltemant species. Indeed, the absence 
of an odd-membered ring is evidently the necessary and sufficient condition for any 
conjugated hydrocarbon to be altemant. 

The Pairing Theorem was first put forward within the framework of simple 
Hückel molecular orbital (HMO) theory. This theory had been introduced a decade or so 
before the publication of the Pairing Theorem. In a pioneering seiles of papers on the 
subject, Hückel [14-17] devised the theory which now bears his name in an attempt to 
solve the Schrödinger equation for hydrocarbon molecules as large as benzene. The 
molecular orbital (MO) approach was subsequently greatly elaborated in the work of 
Coulson and Longuet-Higgins [18-22]. It was Hückel, however, who initially envis- 
aged empiilcally an embryonic version of the Pairing Theorem in a physicochemical 
context, in his papers of the early 1930s [14-17]. He pointed out that a pairing of the 
energy levels was observed whenever HMO calculations were performed on the type of 
polycyclic aromatic hydrocarbon species that he was studying. Moreover, in 1937, 
Lennard-Jones [23], in discussing the nature of certain secular determinants that arose 
from HMO treatments of particular hydrocarbons, mentioned that the deteirninants of 
even degree would be possessed of roots that occurred "in pairs" and would, therefore, 
differ only in their sign. Thus, towards the end of the 1930s, the scene had been set for a 
formal proof of the Pairing Theorem. 

Before discussing the history of this proof, we give first a formal statement of the 
Coulson-Rushbrooke Theorem expressed in the language of molectflar orbital theory. 
We do this because, as we have already pointed out, the Theorem was first formulated 
within the context of HMO theory [1], though we demonstrate later in our exposition 
that it is by no means necessary to use such language to express the mathematical 
content of the Theorem. In this terminology, therefore, the Coulson-Rushbrooke 
Theorem encompasses the following three statements: 

(1) The zc-electron energy levels of an altemant hydrocarbon are symmetrically 
disposed about an appropriate zero energy level. (This is the "pairing" part of the 
Theorem.) 

(2) The molecular orbital constituted from a linear combination of atomic orbitals 
(LCAO-MO) that is associated with the energy level ~ = a + x i ~ is the same as 
that belonging to the "conjugate" or "paired" energy level, a - x  i ~ except, 
simply, that the coefficients weighting the basis atomic orbitals centered on the 
unstarred atoms in the MO of energy a + x i ~, differ from the corresponding 
coefficients in the LCAO-MO associated with the conjugate orbital (of energy 
a -  x i ~),  but only in sign, not in magnitude. 

(3) The total zc-electron charge densities at each of the constituent carbon atoms in an 
altemant hydrocarbon are all identically unity. 
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In the above MO theory formulation of the Coulson-Rushbrooke Theorem, the 
energy levels are stated in terms of Coulomb integrals a and resonance integrals/3. For 
the Theorem to hold, the Coulomb integrals of  all carbon atoms in the conjugated 
system must be identical, but the resonance integrals may be allowed to vary from one 
bond to another, and the Theorem will still be true [4a,b]. It should also be pointed out 
here that which of the two sets of  carbon atoms is designated "starred" and which 
"unstarred" is purely arbitrary. In an altemant hydrocarbon with an odd number of 
carbon atoms participating in the conjugated system (for example, the benzyl radical), 
the larger set is convenüonally taken to be the starred set [2]. 

In this review, we wish to draw attention to the basic topological [24-27] nature 
of the Coulson-Rushbrooke Theorem and, in particular, to the graph-theoretical ideas 
which undeflie it; :for, as will be seen presently, when removed from the context of  
HMO theory, the Theorem is revealed as a purely abstract mathematical theorem in 
linear algebra, having particular relevance to the theory of matrices and simple, con- 
nected graphs. However, we would further emphasize that the Coulson-Rushbrooke 
Theorem affords an example of what appears to be a rare phenomenon - namely, the 
proposition, and proof, initially in a chemical context, of  what subsequently was 
realized to be a fundamental theorem in a branch of pure mathematics, the Theorem 
itself only later, it seems, being discovered (apparently independenüy) by mathe- 
maticians per se [28]. It is for this reason that we regard the Theorem as a "case study" 
for the interplay between mathematical and chemical ideas. As we shall show, the 
Pairing Theorem provides an interesting example of the interaction between mathe- 
matics and chemistry but, more significantly, it also illustrates what one might consider 
to be a regrettable lack of cooperation and awareness of each other's work, between the 
exponents of these two disciplines. 

2. Graph theory and simple molecular orbital theory 

2.1. GRAPH-THEORETICAL DEFINITIONS 

To illustrate the relation between simple HMO theory and mathematical graph 
theory, we give the following definitions of graph-theoretical concepts [24,26] that will 
be required for the subsequent discussion. 

2.1.1. Graph 

The types of graph G that we shall be considering may be defined as a pair 
(V(G), E(G)), where V(G) is a non-empty set of  elements called vertices, and E(G) is a 
finite set of  unordered pairs of  distinct elements of V(G) called edges. We therefore 
represent a graph as a set of  labeled points (vertices), some of which are connected by 
lines (edges). By the latter, we mean that vertex i of  G is "connected" to vertex j of  G if 
the element (i, j )  is contained in E(G). Such a diagrammatic representation of  a specific 
graph is shown in fig. 2(a). It is evident, therefore, that graphs in which there is never 
more than one edge connecting a given pair of  vertices, and every vertex is connected to 
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(c) (d) 

Fig. 2. Two differently labeled isomorphic graphs and their corresponding adjacency matrices. 

at least one other, may represent the sigma bond framework of  a general conjugated 
system of the type to which HMO theory is convenüonally applied. In this representa- 
tion, the vertices correspond to atoms, and the edges correspond to the sigma bonds of  
the carbon atom skeleton. 

2.1.2. Vertex adjacency matrix 

If G is a graph, as defined above, with previously labeled vertex set 
{V I, V z . . . . .  V}, the adjacency matrix A(G) of G is defined to be the n × n matrix [a/j] in 
which 

{ 0, if i= j ;  

aij = 1, if i ,~j, and there is an edge connecting vertices i and j ;  (1) 

O, if i ~ j ,  and there is no edge connecting vertices i andj .  

The matrix shown in fig. 2(b) is, for example, the vertex adjacency matrix of  the graph 
depicted in fig. 2(a), with vertices labeled as shown. 
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A(G) is thus a real, symmetfic matrix with (nonnegative) integer entries, in which 
every diagonal element is zero and in which the sum of the entries in any row or column 
is equal to the number of edges incident upon (i.e. the degree of) the corresponding 
vertex. We note that a real symmetric matrix is merely a special case of an Hermitian 
matrix and that the eigenvalues {A,i}, i= 1, 2 . . . . .  n, of A(G) will, therefore, be purely 
real. Furthermore, 

L &i = Tr(A (G)) = O. (2) 
i=1 

The eigenvalues of a graph G, i.e. the eigenvalues of its adjacency matrix, are very 
useful characteristics of G [4,5,12,24,25,29-38] since they represent a property of G 
that remains invariant under permutation of the rows and simultaneous permutation of 
the columns of  A(G). This process is tantamount to rclabeling the vertices of  G. For 
example, the graph shown in fig. 2(c) is isomorphic with that in fig. 2(a), and the 
adjacency matrix of the graph in fig. 2(c) is shown in fig. 2(d). The list of  eigenvalues of 
G is known as the spectrum of G; the polynomial which has the spectrum of G as its 
roots is called the characteristic polynomial of G [4,5,12,24,25,29-42]. Since the 
eigenvalues are the zeros of the equation 

( - 1 )  n lA(G)  - A, I n ×nl = o,  (3)  

the characteristic polynomial is the expansion (multiplied by ( -1)  n) of  the determinant 
on the left-hand side of the above equation. As already mentioned, the graph spectrum 
(and hence the characteristic polynomial) is invariant to a relabeling of the vertices of G, 
and so the adjacency matrices in figs. 2(b) and 2(d) (and others corresponding to any 
other arbitrary relabeling of the vertices of the graph these represent) give rise to the 
same characteristic polynomial, as follows: 

( - - 1 )  4 

-~ ,  1 1 0 

1 - &  1 0 

1 1 - )~  1 

0 0 1 -,~ 

= ( - - 1 )  4 

-A, 0 1 1 

0 -)t, 0 1 

1 0 - &  1 

1 1 1 -Ä, 

= ~ - 4 ~ - 2 & + 1 .  (4) 

2.1.3. Bipartite and nonbipartite graphs 

We first define a process of  coloring in which a certain color is assigned to each 
vertex in G. A graph (without loops) is said to be k-colorable if, to each of its vertices, 
one of k colors can be assigned in such a way that no two vertices having been allotted 
the same color are connected by an edge. If k = 2, the graph G is bipartite; graphs which 
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cannot be so colored with only two colors are nonbipartite. A bipartite graph is occa- 
sionally, for short, referred to as a "bigraph". 

From the above definition, it is immediately evident that the Coulson-Rushbrooke 
"starring" procedure is equivalent, graph-theoretically, to a coloring process. The graphs 
representing the sigma bond connectivities of the carbon atoms in an altemant hydro- 
carbon are thus biparüte, while those similarly representing nonaltemant hydrocarbons 
are nonbipartite. Other quantities familiar in HMO theory also have exact counterparts 
in pure graph theory - correspondences that are conveniently summarized in table 1. 

Table 1 

Equivalence of graph-theoretical and HMO quantities 

Graph-theoretical quanfity Corresponding HMO quantity 

Vertex Carbon atom in a conjugated 
system 

Edge 

Bipartite } graph (G) 
NonbiparUte 

(-1)n[A(G) - ,]. I n ×1 

Characteristic polynomial of G 
(expansion of the above determinant 

&i' ith eigenvalue of G 
(i.e. of A(G)) 

{Cij}l= 1 , 2 , . .  , n ,  

eigenvector of G belonging to 
the ith eigenvalue 

Carbon-carbon sigma bond 

Altemant } hydrocarbon 
Nonaltemant 

Simple Hückel secular 
determinant 

Polynomial in x obtained by 
expansion of the Hückel 
secular determinant 

x i (= (e i - a)/13), where ~/is 
the ith HMO energy level 

{ C / j } j  = 1 , 2  . . . .  , n ,  

MO corresponding to 
the ith energy level 

2.2. RELATION BETWEEN GRAPH-THEORETICAL AND HMO QUANTITIES 

We shaU illustrate the equivalence just referred to by use of a specific example; 
for a deeper and more formal demonstration of this relationship, the reader is referred to 
refs. [4,5,12,24,29,38]. We consider a simple HMO calculation on the planar, g- 
electron system represented by the graph in fig. 2 (with vertex numbering as in 
fig. 2(a)). The Hückel secular determinant with all a 's equal and all/Ys the same is: 
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a - e  3 3 o 

3 a - e  3 o 

3 ô a - e  3 
0 0 3 a - e  

Dividing the above determinants by fl, and making the conventional substitution 
x = ( e -  o0/[3, we obtain: 

- i  1 1 0 -X 1 0 

1 - x  1 

0 1 -x  

- exactly the same as lA(G) - /~  I n x n I encountered earlier, with the symbol "X" now 
replaced by "x". Thus, requiring that the above determinant be zero gives: 

B - 4 x 2 - 2 x  + 1 =0, (5) 

the left-hand side being an expression analogous to the characteristic polynomial of the 
graph depicted in fig. 2. However, the roots of the above equation {x.} . .  are the 
Hückel energy levels (where x i = (e i - a ) /~  and so the Hückel quantities' z 3, 4 {x i} are the 
exact counterpart of {Xi}. In other words, the problem of finding a Hückel energy level, 
on the assumption of all a's equal and all fl's the same, is analogous to the abstract 
mathematical problem of finding the eigenvalues of an adjacency matrix of the graph 
representing the sigma bond connectivity of the atoms comprising the conjugated 
system [4,5,12,24,25,29,38]. 

3. The P e r r o n - F r o b e n i u s  T h e o r e m  as a historical f o r e r u n n e r  
o f  the  C o u l s o n - R u s h b r o o k e  T h e o r e m  

In the period 1907-1912, Perron and Frobenius [43-48,34] produced their 
famous theorem on irreducible, nonnegative matrices [29,34,47], stated as follows: 

(1) An irreducible, nonnegative matrix, A, always has a real and positive eigenvalue, 
r; the moduli of all the other eigenvalues do not exceed r. 

(2) This real, maximal eigenvalue, r, belongs to an eigenvector having components 
that are all of the same sign. 

(3) Furthermore, ifA has h eigenvalues, ~0(= r), 2 h, 2~ 2 . . . . .  ~h-1' of modulus r, these 
are all distinct roots of the equation 

B h - r h = 0. (6) 
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(4) More generally, the whole spectrum, A 0, A 1, A 2 . . . . .  An- 1, regarded as a system of 
points in the Argand A-plane, maps onto itself under a rotation by 2zeih. 

The last part of the Perron-Frobenius Theorem is the key to the 
Coulson-Rushbrooke Theorem. Since the adjacency matrix of a graph (or the Hückel 
matrix of a molecule) is a real, symmetric matrix, all its eigenvalues are real. Because of 
this, there can be at most two distinct eigenvalues with the maximum modulus, namely r 
and - r ;  then h, referred to in the statement of the Perron-Frobenius Theorem just given, 
is equal to 2. Hence, the whole spectrum of eigenvalues, regarded as a system of points 
in the complex plane, maps onto itself under a rotation of the plane by 2 n'/2 = ~r. In other 
words, if the highest (real) eigenvalue, r, of a nonnegative, real, symmetric matfix A is 
paired with an eigenvalue of -r, all the remaining (n - 2) real eigenvalues (with the 
exception of orte zero, if there is an odd number of zero eigenvalues in the spectrum of 
A) will also be paired. A specific theorem to this effect was published by Wielandt in 
1950 [49]; Hoffman [50], in 1963, proved a theorem conceming pairing of the highest 
and lowest eigenvalues of a regular graph (i.e. one in which all the vertices are of the 
same degree) if and only if the graph is bipartite. The Perron-Frobenius Theorem 
continues to stimulate current mathematical interest (for a recent instance, see, for 
example, ref. [51]). Although, as we have claimed above, the latter part of the 
Perron-Frobenius Theorem is the crux of the Coulson-Rushbrooke Theorem, it is 
necessary, before the Coulson-Rushbrooke Theorem can be secured from the 
Perron-Frobenius Theorem, to make the connecting observation that the adjacency 
matrix of a bipartite graph is an irreducible matrix of the Perron-Frobenius type with 
h = 2, while the adjacency matrix of a nonbipartite graph is such a mafrix with h = 1. 
This sequitor was not, however, made until much later. If this connection had been made 
contemporaneously, the mathematical analog of the Coulson-Rushbrooke Theorem of 
1940 could weh have been proved in 1912! 

4. Early evolution of the Coulson-Rushbrooke  Theorem 

The Pairing Theorem was finally proved by Coulson and Rushbrooke in their 
classic paper published from the University of Dundee in 1940. Our investigations 
among the Coulson Papers in the Contemporary Scientific Archives Collection at the 
Bodleian Library, University-of Oxford [52], and subsequent personal correspondence 
[53,54], reveal documentary evidence that the actual proofof  the Theorem was in fact 
due to Rushbrooke alone. In a letter to the late Dr. E.J. Bowen, FRS, of March 26th 1974 
[52], Professor G.S. Rushbrooke, FRS, wrote: 

"The day I arrived [in Dundee], in October 1939, Charles [Coulson] said 
he was faced with a mathematical problem, which he explained to me. It 
was how to prove the key theorem in his paper on Altemant Hydrocarbons 
(A Note on the Method of Molecular Orbitals [1]), the truth of which he 
had discovered empiricaUy. Happily, I recognized this as a geometä'ical 
theorem that I knew about (and wrote out a proof the next moming)." 
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(As noted in our introduction, however, Hückel [14-17] had already observed 
the energy level "pairing" empirically and, in a more restricted way, so had Lennard- 
Jones [23].) 

Intrigued by this reference to an apparently familiar "geometrical theorem", one 
of the present authors 0~.B.M.) wrote (on August 21st 1977) to ask Professor Rushbrooke 
personally whether by "geometric'al," he had perhaps meant "topological" or "graph- 
theoreücal" or whether, possibly, he had recognized Coulson's problem as being soluble 
as a very special case of the Perron-Frobenius Theorem on nonnegative matrices. 
Professor Rushbrooke's reply (of August 25th 1977 [53]) is worth quoting in full, both 
for the historical record and for the way in which it ties down precisely how his mind, 
and that of Coulson, were working as the Theorem developed: 

" . . . .  perhaps I should be a bit more explicit about what part I actually 
played in establishing the "Pairing" theorem. 

What Coulson could not prove was equation (6) of the "Note on the 
Method of Molecular Orbitals" [ 1 ]; and what I supplied was essentially the 
text between equations (2) and (6) respectively. I had learned this kind of 
mathematics from F.P. White's course on "geometry" at Cambridge: though 
it's really concemed with quadratic forms (and I suspect I was previously 
aware of it only in 3 dimensions). But it's the text between equations (2) 
and (6) that I wrote out for Coulson (essentiaUy as its stands). The 
altemate "crossing" part of the theorem, if I remember rightly, Coulson 
knew how to do if he could prove (6). Incidentally, I was not aware of the 
work of Frobenius, or any graph theory, at that time." 

As regards authorship of this classic paper, Professor Rushbrooke explains [52]: 

"Charles reciprocated by asking what I intended to work on, and I 
expressed an interest in incorporating temperature-dependent energy 
levels within the framework of statistical mechanics. I knew I needed to 
start by exploring the thermodynamic consequences of temperature- 
dependent energies (such as heats of adsorption) but was at a loss as to 
how to begin. Charles said "take the system round a Caroot cycle and let it 
shrink to zero: you can ger everything that way". So I did so, and some- 
thing came out of it. (The Thermodynamic Derivation of Langrnuir's 
Isotherm [551). He then raised the question whether we should just thank 
each other, or publish these two papers joinfly. And we decided joint 
authorship would be appropriate in both cases." 

When lecturing to undergraduates on this subject, Coulson adopted a different 
proof of bis Theorem with Rushbrooke from the one presented in their 1940 paper [1]. 
The proof in question (which, Coulson claimed [4a], though not the most obvious or 
straighfforward one available, does have " . . . .  a certain aesthetic charm about it" [4a]) 
depends on the properties of determinants, and is given in detail in section 6.3 
(pp. 91-96) of rel. [4a]. (It should be noted in passing that the matrix proof of the 
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Coulson-Rushbrooke Theorem presented in appendix D [4bi of ref. [4] is not due to 
Coulson; this appendix was prepared by Professor Brian O%eary and one of the present 
authors ~ B M )  after Professor Coulson's death in 1974. Appendix D [4bi was thus 
contributed to ref. [4] by the surviving authors and, although Coulson was aware of it, 
the proof given in that appendix is actually based on similar, yet independent, proofs of 
Ruedenberg [56], Cvetkovi6 [57], and the other of the present authors (DHR) [58].) 

5. Chemical and mathematical developments in the 1950s and 1960s 

The 1950s and 1960s was a time of considerable activity on the part of chemists 
as far as the properties of alternant hydrocarbon molecules were concemed. This 
activity was largely devoted to improving upon the sophistication of the simple Hückel 
method and ascertaining how many of the well-known properties of this-class of 
molecules carried over into these less-approximate theories. In particular, theorems 
analogous to the Coulson-Rushbrooke Theorem were found [59] with the LCAO 
self-consistent field (SCF) method via approximations of the Pariser-Parr-Pople (PPP) 
type [59-63] and with the unrestricted LCAO-SCF method by use of the same approxi- 
mations [64-66]. Using "standard equivalent orbitals" [67], Hall and collaborators [68,69] 
made a thorough study of the properües of altemant hydrocarbons. The Pairing 
Theorem was also proved for the multi-electron solution of the eigenvalue problem of 
altemant hydrocarbons [62,63]. Finally, Kouteck~ [70] gave the definition of an altern- 
ant system in terms of commutation and anticommutation relations of the Hämiltonian 
with certain operators, and showed that pairing properties follow as a consequence of 
this definition; these were summarized in general equations for the matrix elements of 
an arbitrary operator [70]. 

Meanwhile, at the simple Hückel level, a number of groups were beginning to 
realize the essentially graph-theoretical nature of the method, as discussed in the 
introduction to this review. There were some forerunners of this in the late 1940s and 
early 1950s [71-73]. Then, in the United States, the pioneering work of Ruedenberg, 
Ham and collaborators (e.g. [74-78,56]) slowly appeared throughout the mid-to-late 
1950s (sometimes being published years after its original submission). Simultaneously, 
in Switzerland, Günthard and t~mas  [79] and, later, Schmidtke [80] were independ- 
ently pointing out the "topological" (i.e. graph-theoretical) nature of simple HMO 
theory. In his initial papers [74,75], Ruedenberg introduced the "topological matrix" 
(defined above as the adjacency matrix) of a molecular graph. In one of his 1958 
papers [76], Ham partitioned this matrix in a way that set it up for a proof of the Pairing 
Theorem, although he did not actually prove the Theorem itself. It was, appropriately, 
left to Ruedenberg, in another 1958 paper [56], to give the first entirely graph- 
theoreücal proof of the eigenvalue-pairing part of the Coulson-Rushbrooke Theorem. 

In the meantime, the mathematical literature was, at this stage, devoid of such a 
proof. The only relevant reference dating from the mid-1950s is the 1957 work of 
Collatz and Sinogowitz [33]. (However, this paper must have been written - at least in 
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part - much eaflier than its 1957 date would indicate, for a footnote in it records that one 
of the authors (U.S.) had been killed during an air raid in September 1944.) It was not 
until over a decade later, in 1969, that proofs of the Pairing Theorem appeared in 
the mathemaücal literature as such. Surprisingly, that year brought two of them. 
Cvetkovi6 [57] offered a proof by extending the Perron-Frobenius Theorem and parXi- 
tioning the adjacency matrix of a biparüte graph in a way similar to that in Ruedenberg's 
proof [56], while Marimont [81] provided a proof that depended on showing that in the 
characteristic polynomial of  a bipartite graph with an even number of v e r t i c e s " . . ,  only 
even powers of ,q. will have non-zero coefficients . . ."; the result of  this is that the 
characteristic equation " . . .  will be a function of A], so that if +)~ is a root, so is -A.". Orte 
of the present authors (DHR) also formulated a proof at about this time [58,24,4b]; it 
depended on partitioning the adjacency matrix in the way that Ruedenberg [56] and 
Cvetkovi6 [57] had done. He also tried to extend the results to tripartite graphs [82], but 
was unable to find any corresponding theorem. 

6. The era initiated by the Zagreb Group 

The inifial stimulus for the modem application of graph-theoretical ideas to the 
interpretation of HMO theory was the now-classic paper of Graovac et al. in 1972 [38], 
in which Sachs' theorem [37,83] was used to obtain characteristic polynomials of 
molecular graphs (see also ref. [84]). They gave a proof of the "pairing" part of  the 
Coulson-Rushbrooke Theorem (for, specifically, even alternant hydrocarbons) which, 
in its logic, was similar to that of Marimont [81]. Like Marimont, they showed that the 
characteristic polynomial of such a system contains only even powers of the argument, 
and hence possesses roots that are symmetrically disposed around zero - but in ref. [38], 
Graovac et al. proved this by appeal to Sachs' theorem [37,83]. 

The fol lowing ten years saw extensions [85-88]  of  parts of  the 
Coulson-Rushbrooke Theorem to molecular graphs representing certain types of hetero- 
conjugated molecules [89], and even to such molecules in the presence of an external 
magnetic field [90]. Schwenk, Trinajsti6 and one of the present authors (RBM) [85] 
showed that an analogy of the Pairing Theorem could apply to alternant conjugated 
systems having the same number of "starred" and "unstarred" atoms, the atoms of orte 
set all being, say, carbon, with Coulomb integral < and those of the other set all being 
the same type of heteroatom (nitrogen, say) with Coulomb integral a + hfl. An example 
of a molecule like this is s-triazine (fig. 3). In a graph-theoretical interpretation, such a 
molecule may be represented by a bipartite graph on n vertices in which the vertices of 
one set in the bigraph are unweighted, and those in the other set are all weighted with a 
unique value h. Schwenk et al. [85] showed that the eigenvalues of such a graph are 
paired around h - or, as they put it, 

~/+)1, _1+ i =h ,  for l < i < n .  (7) 
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"~cJ" 
H 

Fig. 3. The structural formula for the heterocyclic conjugated 
molecule s-triazine, an example of a so-called [91,92] "truly 
alternant system". 

Later, with Rigby [86], one the present authors (RBM) further generalized the estab- 
lished, spectral characterizafion of bipartite graphs (which they called homogeneous 
graphs) to a type of bipartite graph which they called heterogeneous. In these latter 
graphs, the vertices in one set are weighted h 1 and each of those in the other set of the 
bigraph is weighted h 2, the number of atoms in the two sets now no longer necessarily 
being equal. They then showed that while, in accord with the Coulson-Rushbrooke 
Theorem, all the eigenvalues of a homogeneous, bipartite graph occur in pairs around 
zero, some of the eigenvalues of an arbitrary, heterogeneous, bipartite graph are paired 
around (1/2)(hl + hz), the remainder having the value h z (or hl). These same authors also 
extended [86] the documented, explicit relations between the eigenvectors belonging to 
"paired" eigenvalues of a homogeneous, bipartite graph (which are the subject of part 
(2) of the Coulson-Rushbrooke Theorem (section 1)) to relate the components of the 
eigenvectors associated with each couple of "paired" eigenvectors of the corresponding 
heterogeneous, bipartite graph. They were led to these generalizations by a detailed 
study of the pioneering work of Bochvar, Stankevich and Chistyakov [91,92] on what 
these latter authors termed "truly alternant systems" and by the very early ideas of 
Longuet-Higgins [93] on "predictable" and "supemumerary" zero eigenvalues. A rather 
more chemically artificial, but nevertheless mathematically interesting, extension to the 
Coulson-Rushbrooke Theorem was made by Gutman [88]. He pointed out that the 
Pairing Theorem is a consequence of the fact that the characteristic polynomial of a 
bipartite graph is either an odd or an even function - summarized by 

¢~(G, -x)  = (-1)"¢,(G, x), (8) 
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Fig. 4. The molecular graph of naphthalene, with vertices 
labeled ready for the discussion given by Guunan in ref. [88]. 
(Redrawn from ref. [88]). 

and went on to show [88] that the presence of heteroatoms usually destroys this pattern 
and that, consequently, in the general case, the Pairing Theorem does not hold for 
heteroconjugated molecules, irrespective of the number of heteroatoms they comprise; 
(see also [4b] for a different demonstration of this point). Gutman circumvents this 
difficulty by defining the "equivalence" of pairs of  verfices. Two vertices v. and v. 
are equivalent if there is a symmetry operation (or, more precisely, an element of thé 
automorphism group of the graph) which maps D i onto v. and vice versa. In fig. 4, of  the 

J 
naphthalene molecule, v 1 and v 6 are equivalent, so are v 1 and v 4, "02 and "08, etc. In 
general, let "01' "02 . . . . .  ~~ be some vertices of the graph G. Then "01' "03 . . . . .  "02k - 1 are 
said to be equivalent to the vertices v 2, "04 . . . . .  v2~ if there is a symmetry operation that 
maps "0~.~«_, onto "02j' J = 1, 2 . . . . .  k. Let H be the molecular graph of an altemant 
hydrocai'bon and let "01' vz . . . . .  "0« and w 1, w 2 . . . . .  w k be its equivalent vertices (all with 
vertex weightings of zero). Gutman then proved the following theorem: if the molecular 
graph H h of a heteroconjugated molecule is formed from H by assigning weights h r on 
the vertices v r and weights o f - h  r on the vertices w,  r = 1, 2 . . . . .  k (by the device of 
adding appropriately weighted self-loops to the vertices in question), then its eigen- 
values, {Xi}, still conform to the Coulson-Rushbrooke Pairing Theorem: 

Bi + ~ + 1  i = 0 '  i = 1 , 2  . . . . .  n. (9) 

For example, the Pairing Theorem holds for the two molecular graphs related to the 
naphthalene molecular graph shown in fig. 5; h 1, h 2, h 3 may be any real numbers. 



R.B. Mallion, D.H. Rouvray, The Coulson-Rushbrooke Pairing Theorem 15 

Fig. 5. Two molecular graphs, derived from the naphthalene rnolecular 
graph, for which Gutman's pairing theorem [88] holds. The vertex weight- 
ings h 1, h 2 and h 3 may be any real numbers. (Redrawn from ref. [88]). 

In another interesting development, Maouche and Gayoso [90] have applied 
London's gauge-invariant LCAO version of HMO theory (see, for example, [94]) to 
show that even when an altemant hydrocarbon is immersed in an applied, extemal 
magnetic field, the eigenvalue-pairing part of the Coulson-Rushbrooke Theorem re- 
mains valid. This is so despite the fact that the eigenvalues themselves are an explicit 
function of the extemal magnetic field. They also considered [90] what Bochvar 
et al. [91,92] called "truly altemant systems" and what in ref. [86] were dubbed 
"heterogeneous" molecular graphs - that is, more general altemant conjugated systems 
formed by replacing the starred atoms of an alternant hydrocarbon by an atom A and 
unstarred ones by an atom B, A and B both being sp2-hybridized. They then showed that 
the eigenvalue spectrum of such a system may be established starting from the eigenvalue 
spectrum of the corresponding ("isotopological" [90]) conjugated hydrocarbon in the 
presence or absence of an external magnetic field. When the value of this extemal 
magnetic field is set at zero, the resulting relations constitute a generalization of the 
Coulson-Rushbrooke Theorem to alternant compounds of the type A-B [90]. 

There has recently been a considerable resurgence of interest in the eigenvalue 
spectra [95] of Möbius systems [6,12a-d,13,25,96-100]. The adjacency matrices of 
Möbius molecules contain negative elements [6,12a-d, 13,25,96 - 100] and they are not, 
therefore, the "Matrizen aus nicht-negativen Elementen" envisaged in Frobenius' exten- 
sion [46] of Perron's original theorem [43]. Parts (1), (3) and (4) of the Perron-Frobenius 
Theorem (section 3) may, however, properly be applied to the adjacency matrices of 
Möbius hydrocarbons, despite the fact that they are not nonnegative matrices. However, 
the fact that such adjacency matrices are not nonnegative ones does invalidate the 
applicability of part (2) of the Perron-Frobenius Theorem (which provides for the real, 
maximal eigenvalue mentioned in part (1) of the theorem to have belonging to it 
an eigenvector in which all the components are of the same sign). As has been 
observed [13], the consequence of this in a molecular orbital context is that the lowest- 
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energy bonding molecular orbital of a Möbius altemant hydrocarbon does not 
necessarily have to be nodeless [13]. 

All three parts of the Coulson-Rushbrooke Theorem (section 1) do, however, 
still apply to the adjacency matrices of Möbius altemant hydrocarbons for, as is shown 
in rel. [4b], the validity of the Theorem does not depend in any way on the oft-diagonal 
elements of the adjacency matrix in question, but merely on (a) its capability of being 
partitioned, by a judicious labeling of the carbon atoms, into the requisite blocked form, 
and on (b) the values of its diagonal elements having an appropriate pattern. (Details of 
the exact conditions required for the Coulson-Rushbrooke Theorem to hold are given in 
[4b].) The claim [ 13,12c] that the Coulson-Rushbrooke Theorem still applies to Möbius 
altemant hydrocarbons is consistent (at least as far as the "pairing" part of it is con- 
cemed) with, for example, the fact that eigenvalue "pairs" may be discemed in the 
published, eigenvalue spectrum of Möbius cyclobutadiene [12c, 97,101-103], and 
ofMöbius benzene [12b], but not in the eigenvalue list of (nonalternant) Möbius 
cyclopropenyl [ 12b] or of the likewise nonaltemant Möbius cyclopentadienyl [ 12c]. 

7. Generalization of alternant systems 

The past decade has witnessed an increasingly sophisticated generalization of the 
concept of altemant systems, by workers such as Zivkovie [11] and Karadakov [9]. 
These developments were founded on the idea that a symmetry in a quantum-mechanical 
system should be explicitly incorporated into the parameters and descriptors used in the 
characterization of that system [11 ]. In the case of conjugated alternant molecules and 
ions, altemancy symmetry arises naturally and such symmetry leads to many of the 
remarkable properties of altemant stmcies that are not shared by their nonaltemant 
counterparts [11,104]. For instance, there is a close resemblance between the spectra of 
the positive and negative ions of a given alternant hydrocarbon, whereas no such 
resemblance exists for the ions of nonaltemant isomers [62,63]. Moreover, because 
polyenes are altemant hydrocarbons, they are known to possess certain surprisingly 
low-lying excited states which am accessible only by two-photon absorptions [105]. It 
has been observed earlier (section 5) that such altemancy symmetry properties hold also 
in approximations other than the simple Hückel one. Thus, these properties am known 
to apply in the cases of the PPP approximations, both at the SCF one-particle level and 
at the n-particle level in the Tamm-Dancoff  approximation [106]. Moreover, 
McLachlan [62] has demonstrated that these still apply even when the complete confi- 
guration interaction (CI) space is considered in conjunction with the PPP Hamiltonian. 
In bis approach to altemant hydrocarbons, McLachlan [62, 63] wrote the PPP Hamilto- 
nian first in terms of particle creation and particle annihilation operators and then in 
terms of hole creation and hole annihilation operators. The two expressions he obtained 
differed only by a constant, and this formally accounts for all the pairing properties. 
Subsequently, a number of other workers made either implicit or explicit appli- 
cation of various forms of the particle-hole symmetry operators; examples of such 
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include Kouteck~ [70] who used this approach at the n-electron level, and Visscher and 
Falicov [107] who used these operators in their study of the benzene molecule. These 
and a variety of other procedures were united in one very general formulation [104] of 
the adaptation necessary for altemancy symmetry when PPP-type Hamiltonians are 
being employed. This work led ultimately to a resolution [11] of two major problems 
confronting researchers in this field, namely (1) the construction of general Hamiltoni- 
ans that incorporate altemancy symmetry, and (2) the search for all of the properties 
characteristic of alternant systems. These two problems were tackled [11] by making 
use of the so-called splitting theorem [10,108], which states that the CI space, Xtl, 
generated by n electrons located over 2n orthonormalized spin orbitals can be parti- 
tioned into two complementary subspaces, X + and X~, such that each state tg + ~ X* 

t l  t l  

and each state ~t- ~ X~ is "alternant-like" in that it resembles the n-electron eigenstates 
of neutral, alternant molecules. This led to the formulation [10,108,109] of a completely 
general alternancy symmetry-adapted approach for the treatment of altemant species. 

Among other systems which have been studied within the framework of this 
formulation, mention should be made of the Friedel oscillations in metals [110], the 
Heisenberg models of ions, functional groups, or molecules within a crystal [7], high- 
spin hydrocarbon species [8], and the ferromagnetic or antiferromagnetic ordering of 
exchange-coupled sites in magnetic media [111]. In his study of Heisenberg models, 
Klein [7] elaborated six theorems that specify conditions which the exact ground state 
for the model must satisfy. These conditions lead to prediction of a number of the 
physicochemical properties of these systems at a quantitative level. In the case of n- 
electron networks of hydrocarbons, the above conditions may be regarded as valence- 
boncl analogs of some of the more well-known theorems for HMO descriptions of the 
hydrocarbons [8]. Klein and collaborators [8] a l~  made use of alternant graphs in 
connection with the prediction of the existence of a class of very high-spin hydro- 
carbons. Such systems, which have been termed "organic ferromagnets", seem to have a 
high probability of physical existence, although they may be highly reactive and diffi- 
cult to prepare [8]. It is possible that such networks may be stabilized by functional 
groups attached to the network. Further research along these lines will be necessary to 
determine whether the promise of these theoretical studies can become reality. What is 
certain, however, is that approaches of this type lead to a number of important predic- 
tions of the proper~ies of an exciting range of materials and will perhaps one day 
eventually yield sufficient insights to make production of the materials themselves 
possible. 

8. Conclusion 

We conclude this review of the first fifty years of the Coulson-Rushbrooke 
Theorem by re-emphasizing a general, philosophical point that the present authors have 
stated elsewhere [4b,5,112-114]. We have shown that patts (1) and (2) of the 
Coulson-Rushbrooke Theorem " . . .  have an underlying mathematical significance 
outside the context of, not merely the HMO model, but quantum chemistry and, indeed, 
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chemistry itseW' [4b]. This is because, when  the simplest HMO approximations are 
invoked, there is an exact isomorphism between HMO energy levels and LCAO-MOs 
on the one hand and, on the other, eigenvalues and the corresponding eigenvectors, 
respectively, of the associated molecular graph. Part (3) of the Coulson-Rushbrooke 
Theorem, with its reference to lr-electron atomic charges, would appear less obviously 
to have a topological basis. As we have previously pointed out [4b,5], the concept of 
"charge", as defined in the HMO method [4], implicitly involves the Aufbau process, 
embracing the Pauli Exclusion Principle and Hund's Rules, for assigning ~r-electrons to 
the available orbitals. We have shown [112-114], however, that the Aufbau scheme 
may be simulated by a completely nonphysical algorithm to yield energy level occupa- 
tion numbers which may be regarded as entirely graph-theoretical quantities since, 
once the algorithm [112,113] has been established, they are predetermined by the 
relative magnitudes of the eigenvalues of the molecular graph in question. Once these 
energy level Ceigenvalue") electron occupation numbers have been thus obtained, the 
~r-electronic charge densities on the constituent carbon atoms of a conjugated hydro- 
carbon then de~ nd  o~~y on the eigenvectors of the hydrocarbon's molecular graph 
[112]. Charge densities may, therefore, also be considered as purely topological quanti- 
ties (at least for the case of neutral hydrocarbons). It is for this reason that the present 
authors have already proposed [112, 113] that the concept of atomic charge might 
usefully be regarded as an abstract, nonphysical, graph-theoretical index which is a 
characteristic of the vertices of certain nonbipartite graphs, and have extended this by 
venturing to suggest [5] that graph theorists " . . .  might do weil to examine closely other 
molecular orbital indices (such as bond orders, polarizabilities, etc.) that chemists have 
devised in the course of their study of planar, conjugated systems" [5]. It can, therefore, 
be argued that all three parts of the Coulson-Rushbrooke Theorem of 1940, including 
the one concemed with uniformity of atomic charge, have an entirely topological basis 
in that, in the final analysis, their validity depends solely on the carbon atom con- 
nectivity of an alternant hydrocarbon. 
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